6G Summit – 18.03.2020

Lessons on Building Edge AI Solutions towards 6G

Aaron Ding

TU Delft, Netherlands

Outline

- Introduction
- Edge Analytics
- Edge Offloading
- Takeaway

Introduction: Edge Al



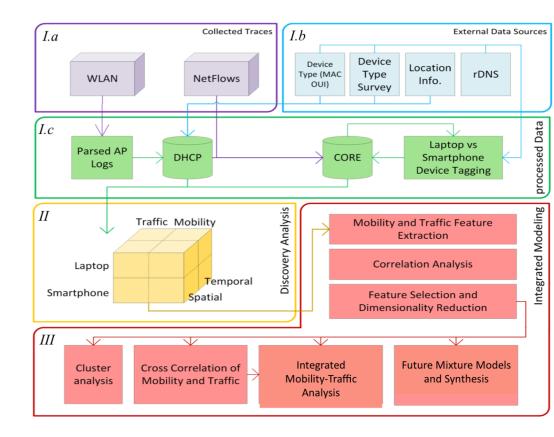
Outline

- Introduction
- Edge Analytics
- Edge Offloading
- Takeaway

FLAMeS on Wireless Edge Analytics

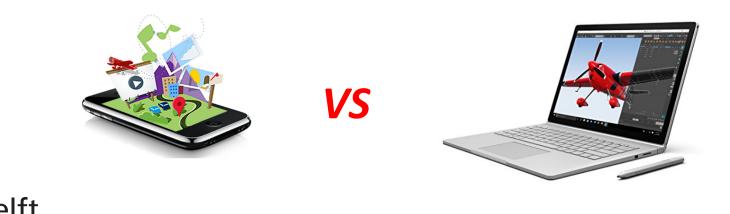
- Demand for wireless edge analytics
 - Look into the edge
- Mobility and Traffic
 - Interplay
 - Across device types
 - Modeling insights

Output 1: IEEE INFOCOM 2018 Output 2: ACM MSWiM 2019



Flutes vs. Cellos

- Mobile vs Laptop
 - Impact on data traffic and mobility
 - Integrated mobility-traffic models
- Mobility-Traffic Interdependence is not well-studied
 - Usable traces are hard to obtain
 - Privacy concern (GDPR)



Motivations

- Two major factors affecting mobile network performance are mobility and traffic patterns
 - Mobility and Network usage characterize different aspects of human behavior, e.g., using different devices
 - Simulations, analytical-based performance evaluations, and future predictive caching schemes rely on models to approximate factors affecting the network
- Many earlier mobility modeling studies use presmartphone WLAN traces (device types not considered)
- Mobility-Traffic Interdependence is not well-studied
 UDelft

FLAMeS Dataset

- Size of raw dataset
 - 30+ TB, 1760 APs, 138 buildings, over 479 days
 - 76 billion NetFlow records, 555 million AP traces, 316k devices
- Device categorization
 - MAC address survey
 - OUI matching
 - Web domain analysis

	# Records		Traffic V	Vol. (TB)	# MAC		
	DHCP	CORE	ТСР	UDP	WLAN	CORE	
Flutes	412.0 M	2.13 B	56.18	4.50	186.0 K	50.3 K	
Cellos	101.0 M	4.20 B	73.85	12.90	93.2 K	27.1 K	
Total	557.5 M	6.53 B	134.39	17.61	316.0 K	80.0 K	

Research Questions

- How different are mobility and traffic characteristics across device types, time and space?
 - Multi-dimensional study
- What are the relationships / correlation?
 - Interdependency
- Should new, integrated mobility-traffic models be devised to capture these differences? What is the value and utility of integrating mobility and traffic?
 - If so, how

Discovery and Insights

- Mobility analysis
 - Session start probability, radius of gyration, visit preference, sessions per building, etc.
- Traffic analysis
 - Flow level, spatial, temporal behavior
- Integrated analysis
 - Feature engineering, modeling insights

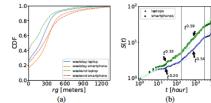


Fig. 4: (a) Radius of gyration (rg for the device types). (b) Visited locations S(t). Vertical lines at 7, 120 and 240 days.

session at a building b, here referred as *DLT*. Interestingly, cellos have slightly longer stays but both have medians around 2:40 hours. The similarity of the distributions, combined with a lower number of visited locations indicate that cellos are used mostly when users remain longer periods at places.

Fig. 4b highlights the differences between *flutes* and *cellos* on the required time t to visit S(t) locations. After an initial exploration period of one week the rates of new visits change similarly for both device types, and new exploration rates show up at 120 and 240 days. These could be explained by the weekly schedules of the university as well as the usual length of a lecture term (\approx 4 months).

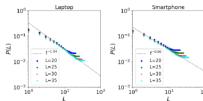


Fig. 5: Zipf's plot on L visited access points. We also consider the number of unique APs a device associates with, APC, which provides a finer spatial resolution than the building level. Furthermore, the probability of finding a device at its L-th most visited access point is shown in Fig. 5. When taking buildings as aggregating points for location, the values become $L^{-1.36}$ for cellos and $L^{-1.16}$ for flutes. These approximations validate previous work on human mobility [8],

vet highlight differences between device types.

D. Sessions per building

To study AP utilization over time, we look at the session duration distribution, or session duration dispersal kernel P(t), depicted in Fig. 6. The smaller inner plots represent the same metric, limited to four types of buildings.

We noted that the five-minute spikes correspond to default idle-timeout for the used WiFi routers. On the other hand, the *knees* at 1 and 2 hours could be explained by the typical duration of classes. They are only noticeable at Academic buildings (shown inside inner plots) and during weekdays (not

shown). This leads us to conclude that despite the differences in distributions of device types, *flutes* and *cellos* present *certain similarities in their usage, such as during classes.* To differentiate *pass-by* access points, we examine all sequences of three unique APs where all session durations are lower than 5 minutes (typical idle-timeout). We observed these APs clustered at buildings that also had major bus stops nearby.

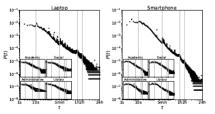
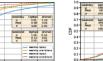


Fig. 6: Probability P(t) of session duration t.

VI. TRAFFIC ANALYSIS

In this section, we compare different *traffic* characteristics, across *device types*, time and space. For this purpose, we start with statistical characterization of *individual* flute and cello flows. Next, we measure how these flows, *put together*, affect the network patterns across APs and buildings. Finally, *user behavior* is analyzed by monitoring weekly cycles, data rates, and active durations. By quantifying *temporal* and *spatial* variations of traffic across device types, we make a case for new models to capture such variations based on the most relevant attributes. Table IV summarizes the results.



(a) Packet processing rate of APs (b) Traffic load of APs (millions per day) (MB per day, log-scale)

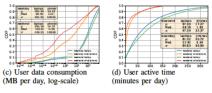


Fig. 7: Distribution plots

JDelft

Data, Data, Data

• Big shot ... grand rejection

Big Data For The Win?

- What were boasted, all fired back
 - "Your data is not new enough "
 - "Your findings may not reflect the latest situation "
 - "Your analysis coverage is limited "
 - "Your insights for modeling are incomplete "
 - "Your work impact is not ... "

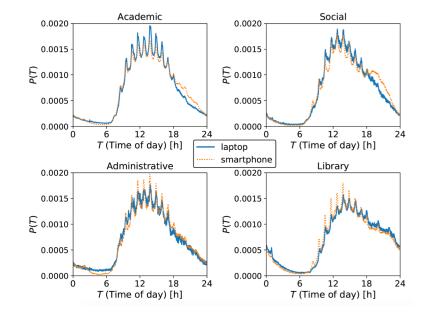
. . .

What Went Wrong?

- Reflections
 - Painful but valuable process
 - Comments are actually valid
- Focus adjustment
 - Start over again
 - Rewrite the whole thing

Methodology or Dataset?

Not just to impress others

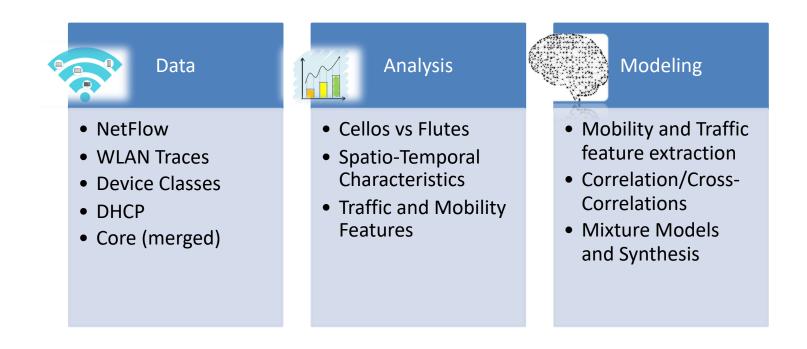


	Flutes (F)			Cellos (C)			Ratio (C/F)		
	μ	mdn	σ	μ	mdn	σ	μ	mdn	
LJM	435	296	813	178	1	624	0.409	0.003	
	350	168	683	97	1	312	0.277	0.006	
DIA	549	411	874	195	1	642	0.355	0.002	
DIA	425	179	739	107	1	338	0.252	0.006	
ТЈМ	1582	707	2336	378	1	1444	0.239	0.001	
1 J IVI	1036	279	1793	252	1	1766	0.243	0.004	
GYR	396	290	2725	321	191	3265	1.102	1.019	
	330	248	1368	178	65.1	1800	1.247	1.4	
BLD	5.4	3	5.6	1.8	1	2.1	0.811	0.659	
DLD	2.8	2	4.1	1.5	1	1.8	0.539	0.262	
APC	11.8	6	13.3	3.7	2	4.8	0.333	0.333	
AIC	7.2	4	8.8	3	2	3.8	0.536	0.5	
PDT	225	161	219	248	164	254	0.314	0.333	
	223	135	272	278	189	292	0.417	0.5	
DTL	316	235	302	316	217	305	1	0.92	
	326	247	308	316	221	309	0.97	0.89	

Start time	Finish time	Duration	Source IP	Destina	tion IP	Protocol	Source port	Destina	ation port	Packet count	Flow size
1334332274.912	1334332276.5	76 1.664	173.194.37	7 10.15.2	25.126	ТСР	80	60	0482	157	217708
	User IP	User MAC	A	P name	A	P MAC	Lease begi	n time	Lease er	nd time	
	10.130.90.3	00:11:22:33:44	4:55 b422	143-win-1	00:1d	l:e5:8f:1b:30	1333238	3737	133323	38741	

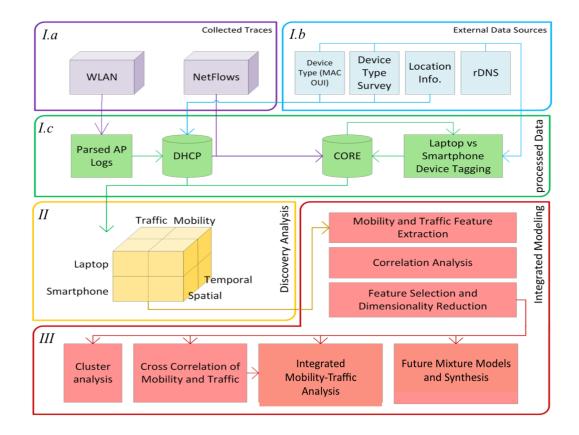
Back to the Basics

• Wireless edge analytics



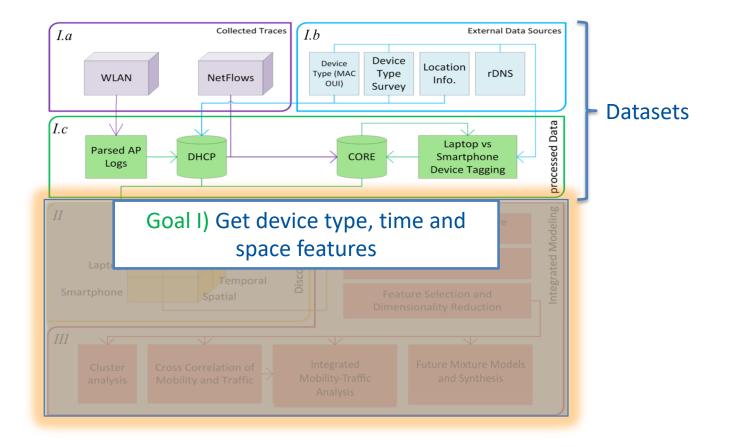
Framework for Edge Wireless Analytics

FLAMeS workflow



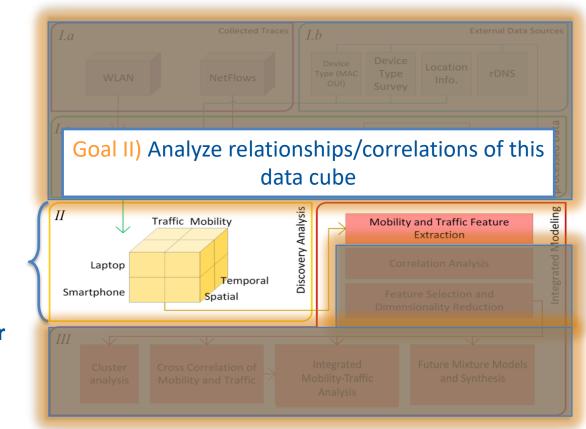
FLAMeS

- Feature extraction
 - WLAN logs and NetFlows



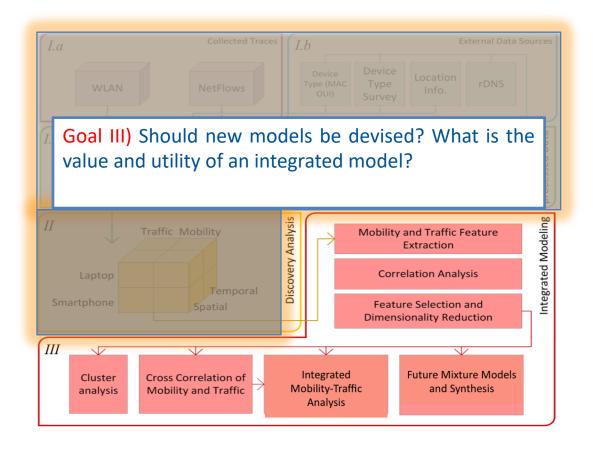
TUDelft

Data traffic and mobility interdependency



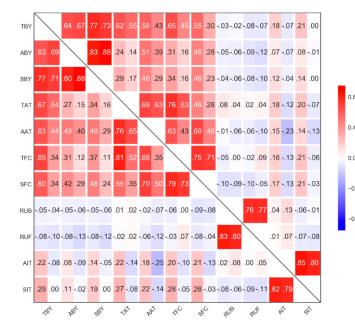
Data cube, traffic/mobility analyzed temporally, spatially, and per device type

Towards integrated modeling



Adjust the Focus

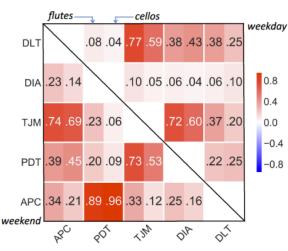
- Methodology and framework
 - Dataset mainly as a tool to verify our assumption and investigations



total
total

Made It!

IEEE INFOCOM 2018 ACM MSWiM 2019



Abbr.	Description
APC	AP Count (unique)
PDT	Preferred building
	Δt
	Total (sum) jumps
DIA	Diameter of mobility
DLT	Delta time (time of
	network association)

Remarks

- It is crucial to differentiate flutes vs. cellos for both mobility and traffic due to their very different nature. Correlations of these features matter, and should be captured in models.
- Traffic generation, spatial locations, and temporal behavior can be linked per device type and per user "community" (e.g. students of different disciplines at various buildings).
- There is significant potential for an integrated mobility-traffic model that captures relationships across device types, time and space.

Lessons

- Risk 1: Boasting dataset value
 - Don't over-estimate, nor over-claim. Otherwise, Over..
 - Correct focus/position is crucial
- Risk 2: Good stuff needs less polishing
 - Will block the work from top venue
 - Balance and structure

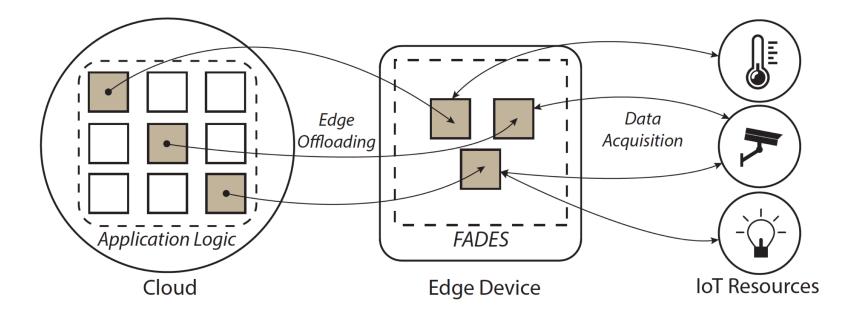
Toolkit and in-depth study are appreciated

Outline

- Introduction
- Edge Analytics
- Edge Offloading
- Takeaway

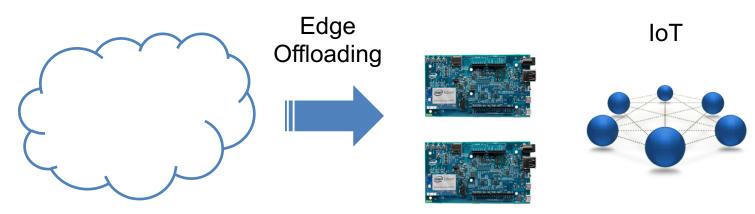
Edge Offloading

Fine-grained offloading for IoT



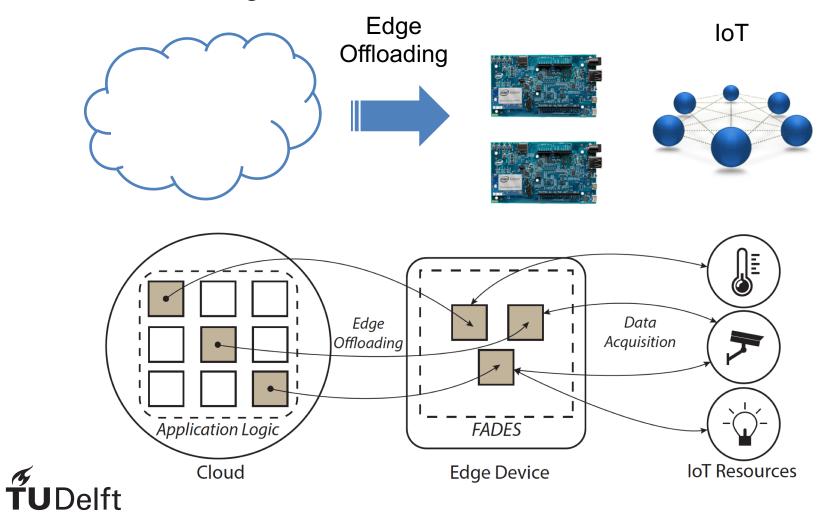
Edge Offloading

Reverse direction

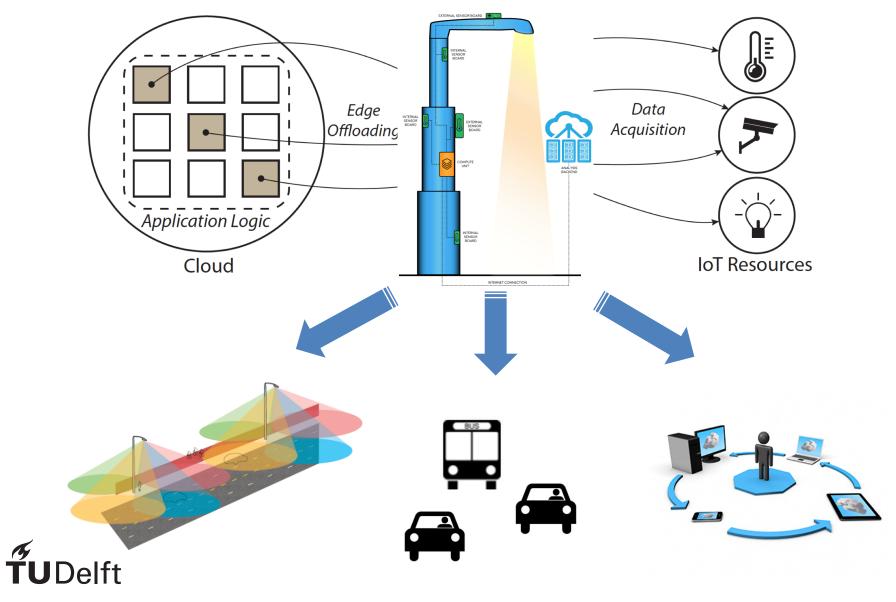


Edge Offloading

Cloud – Edge – IoT



The Real Benefits



How to Offload to Edge?

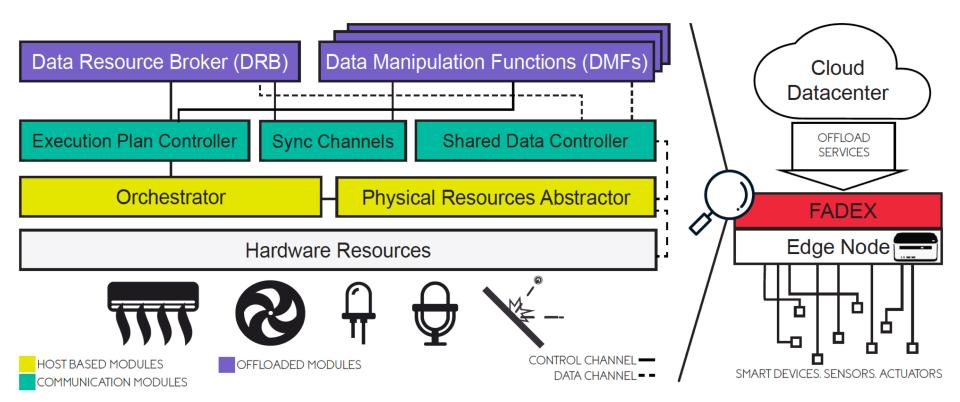
FADES

- Unikernel
- MirageOS
- Single purpose
- Modular
- Compact size
- On demand
- Isolation

Data Edge Offloading Acquisition ア Application Logic FADES Cloud **Edge Device IoT** Resources

Lightweight Virtualization

Design and Implementation



Use Cases

- Software-oriented
 - IoT sensing data
 - Image
 - Audio
 - Data encryption
- Hardware-oriented
 - Actuator access

Fine-grained Edge Offloading

Does This Really Work?

Experiments

- Feasibility
 - System performance and limitation on x86 and ARM
 - Memory utilization, network
 - Does this really work?

Test over three types of devices

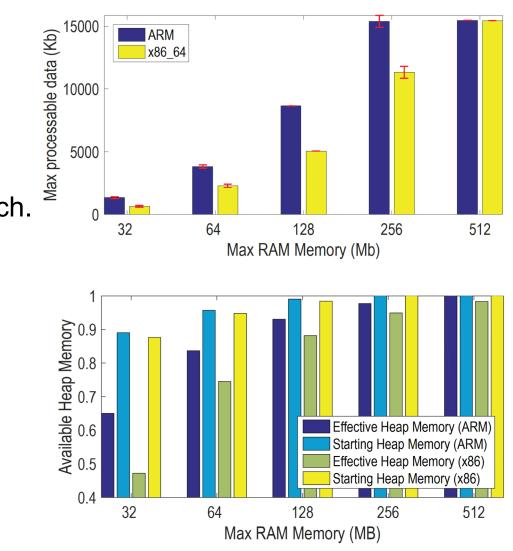
Device	СРИ	RAM	Network
Cubietruck	Allwinner A20 ARM Cortex-A7 dual-core @ 1GHz	1 GB	100Mb Ethernet
Intel NUC	Intel(R) Core(TM) i5-6260U CPU@1.80GHz	16 GB	1000 Mb Ethernet
Dell Server	Intel(R) Xeon(R) CPU E5-2640 v3@2.60GHz	140 GB	1000 Mb Ethernet

Observations

- On X86 and ARM
 Micro benchmark
- Immature yet
 - Image size under two arch.
 affects available runtime memory
 - Low RAM case

Considerable loss of available memory for low RAM Unikernels.

Impact on resource utilization for IoT cases.



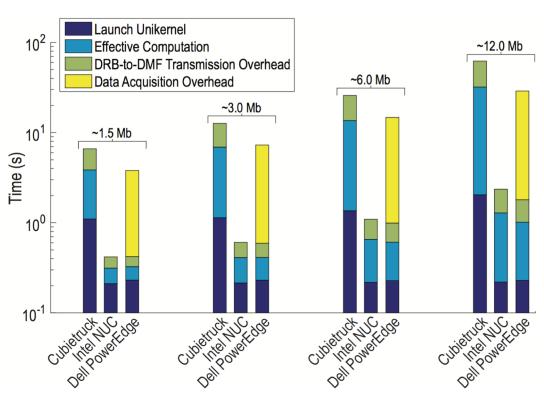
Observations

- Bright side
 - Edge beats the cloud

Cubietruck, Intel NUC have local copy of data (the edge setting)

Dell PowerEdge fetches data from remote location (the cloud setting)

Sufficiently powerful edge device combined with local data makes edge offloading convincing



Observations

Hardware Limitations

- Demanding to find suitable embedded boards that can support Xen and MirageOS.
- Deployment on Cubietruck board was more challenging than on Intel NUC.

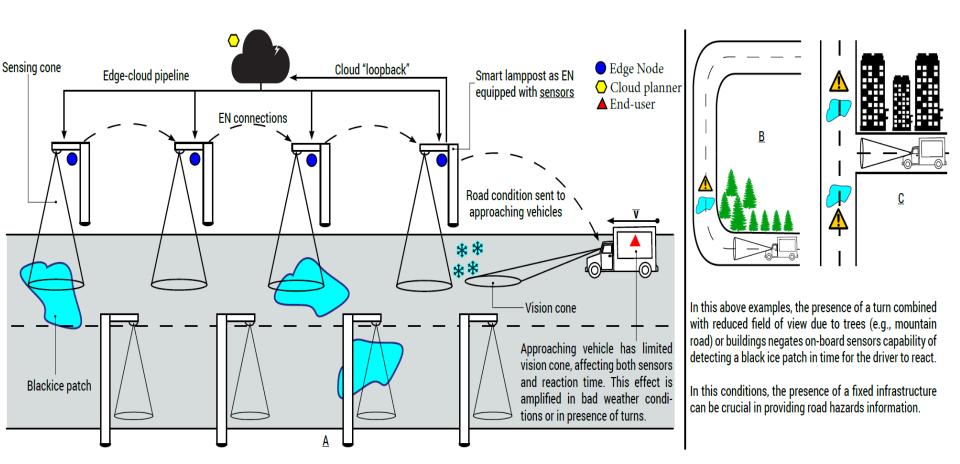
Platform Limitations

- Issues with the network API when transferring data between two unikernels.
 - Culprit: a bug in the TCP/IP MirageOS stack that doesn't handle properly writing packets larger than the MTU. In consequence, we had to introduce an extra chunking function at the application layer to split, and later reconstruct the data.
- Single CPU considerations

Security Concerns

- Guarantee the authenticity and validity of the offloaded tasks
- Without a signing and validation infrastructure to discriminate legit from tampered unikernels, we might risk executing malicious code and infringe the security requirements
- Side-effects of "decentralizing" control and delegating responsibilities
- Strict control and monitoring are required

Edge Chaining System Best Paper Award

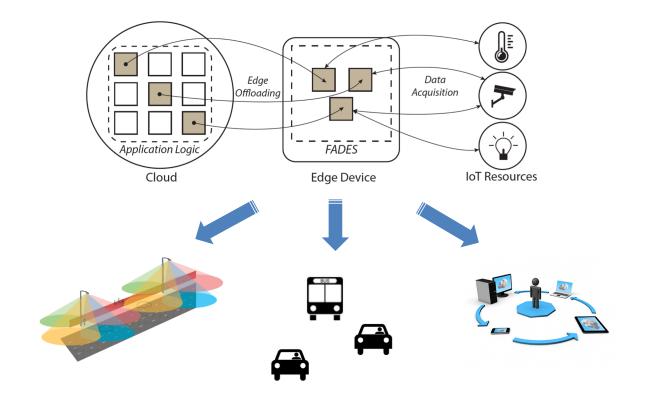


TUDelft

[1] "Consolidate IoT Edge Computing with Lightweight Virtualization". Volume 32, Issue 1, *IEEE Network 2018* Impact Factor 7.9

[2] "Edge Chaining Framework for Black Ice Road Fingerprinting". *ACM EdgeSys 2019* Best Paper Award

[3] "ECCO: Edge-Cloud Chaining for Road Context Assessment". ACM/IEEE IoTDI 2020 Premier IoT Conference



Lessons

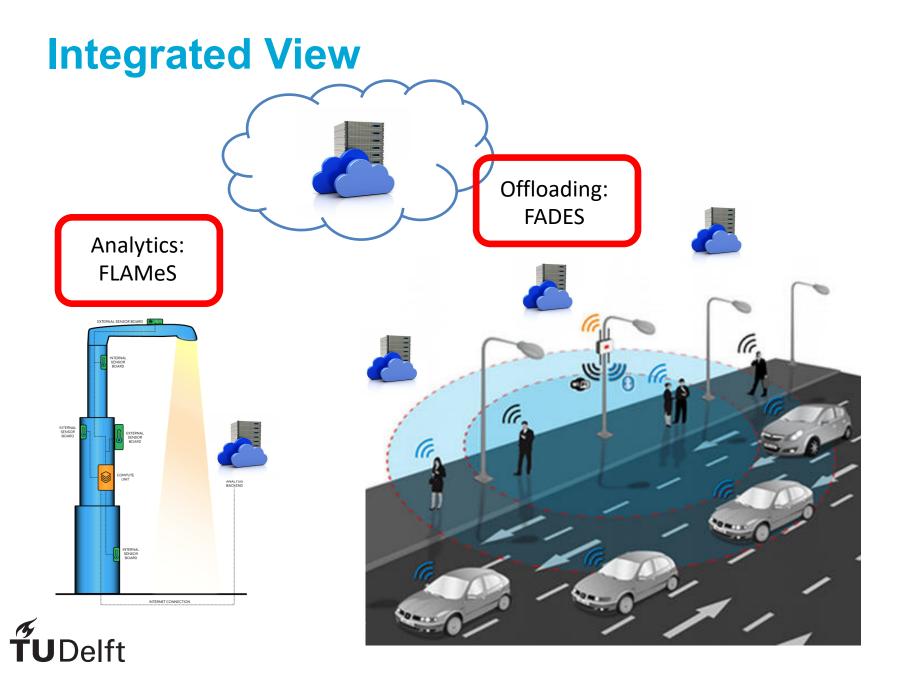
- Risk 1: Too many options
 - Containers, unikernels
 - System development takes long time
- Risk 2: Worry too much about 'fancy' use cases
 - Not the deciding factor
 - Feasible assumption

Advantages of being the First

- Share insights with community
- Even initial work will be appreciated

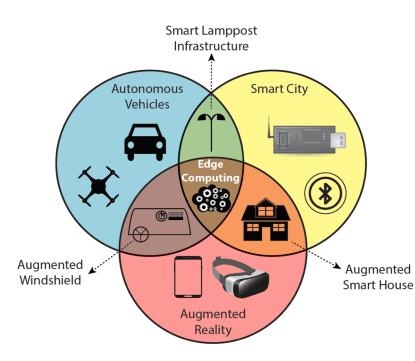
Outline

- Introduction
- Edge Analytics
- Edge Offloading
- Takeaway

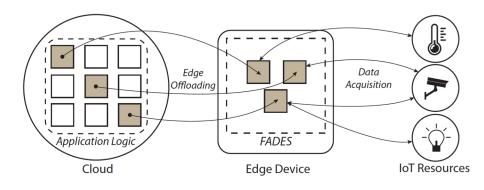


Takeaway

- Dataset
 - Useful but avoid boasting
 - Good work still needs polishing
- Being the first does pay off
 - Analytic and experiment insights



Problems are out there Research Opportunities !



What to Expect Next

EdgeSys 2020

The 3rd International Workshop on Edge Systems, Analytics and Networking 27th April 2020, Heraklion, Crete, Greece

Chairs: Aaron Ding (TU Delft) Richard Mortier (Cambridge)

